Pada umumnya mesin listrik dapat dibagi menjadi dua bagian, yaitu mesin listrik statis dan mesin listrik dinamis.
Mesin listrik statis adalah transformator, alat untuk mentransfer energi listrik dari sisi primer ke sekunder dengan perubahan tegangan pada frekuensi yang sama.
Mesin listrik dinamis terdiri atas motor listrik dan generator. Motor listrik merupakan alat untuk mengubah energi listrik menjadi energi mekanik putaran. Generator merupakan alat untuk mengubah energi mekanik menjadi energi listrik.
Anatomi keseluruhan mesin listrik tampak pada gambar dibawah ini.
Sistem 3 Phasa
Pada sistem tenaga listrik 3 fase, idealnya daya listrik yang dibangkitkan, disalurkan dan diserap oleh beban semuanya seimbang, P pembangkitan = P pemakain, dan juga pada tegangan yang seimbang. Pada tegangan yang seimbang terdiri dari tegangan 1 fase yang mempunyai magnitude dan frekuensi yang sama tetapi antara 1 fase dengan yang lainnya mempunyai beda fase sebesar 120°listrik, sedangkan secara fisik mempunyai perbedaan sebesar 60°, dan dapat dihubungkan secara bintang (Y, wye) atau segitiga (delta, Δ, D).
Gambar 1. sistem 3 fase.
Gambar 1 menunjukkan fasor diagram dari tegangan fase. Bila fasor-fasor tegangan tersebut berputar dengan kecepatan sudut dan dengan arah berlawanan jarum jam (arah positif), maka nilai maksimum positif dari fase terjadi berturut-turut untuk fase V1, V2 dan V3. sistem 3 fase ini dikenal sebagai sistem yang mempunyai urutan fasa a – b – c . sistem tegangan 3 fase dibangkitkan oleh generator sinkron 3 fase.
Hubungan Bintang (Y, wye)
Pada hubungan bintang (Y, wye), ujung-ujung tiap fase dihubungkan menjadi satu dan menjadi titik netral atau titik bintang. Tegangan antara dua terminal dari tiga terminal a – b – c mempunyai besar magnitude dan beda fasa yang berbeda dengan tegangan tiap terminal terhadapa titik netral. Tegangan Va, Vb dan Vc disebut tegangan “fase” atau Vf.
Gambar 2. Hubungan Bintang (Y, wye).
Dengan adanya saluran / titik netral maka besaran tegangan fase dihitung terhadap saluran / titik netralnya, juga membentuk sistem tegangan 3 fase yang seimbang dengan magnitudenya (akar 3 dikali magnitude dari tegangan fase).
Vline = akar 3 Vfase = 1,73Vfase
Sedangkan untuk arus yang mengalir pada semua fase mempunyai nilai yang sama,
ILine = Ifase
Ia = Ib = Ic
Hubungan Segitiga
Pada hubungan segitiga (delta, Δ, D) ketiga fase saling dihubungkan sehingga membentuk hubungan segitiga 3 fase.
Gambar 3. Hubungan Segitiga (delta, Δ, D).
Dengan tidak adanya titik netral, maka besarnya tegangan saluran dihitung antar fase, karena tegangan saluran dan tegangan fasa mempunyai besar magnitude yang sama, maka:
Vline = Vfase
Tetapi arus saluran dan arus fasa tidak sama dan hubungan antara kedua arus tersebut dapat diperoleh dengan menggunakan hukum kirchoff, sehingga:
Iline = akar 3 Ifase = 1,73Ifase
Daya pada Sistem 3 Fase
1. Daya sistem 3 fase Pada Beban yang Seimbang
Jumlah daya yang diberikan oleh suatu generator 3 fase atau daya yang diserap oleh beban 3 fase, diperoleh dengan menjumlahkan daya dari tiap-tiap fase. Pada sistem yang seimbang, daya total tersebut sama dengan tiga kali daya fase, karena daya pada tiap-tiap fasenya sama.
Gambar 4. Hubungan Bintang dan Segitiga yang seimbang.
Jika sudut antara arus dan tegangan adalah sebesar θ, maka besarnya daya perfasa adalah
Pfase = Vfase.Ifase.cos θ
sedangkan besarnya total daya adalah penjumlahan dari besarnya daya tiap fase, dan dapat dituliskan dengan,
PT = 3.Vf.If.cos θ
• Pada hubungan bintang, karena besarnya tegangan saluran adalah 1,73Vfase maka tegangan perfasanya menjadi Vline/1,73, dengan nilai arus saluran sama dengan arus fase, IL = If, maka daya total (PTotal) pada rangkaian hubung bintang (Y) adalah:
PT = 3.VL/1,73.IL.cos θ = 1,73.VL.IL.cos θ
• Dan pada hubung segitiga, dengan besaran tegangan line yang sama dengan tegangan fasanya, VL = Vfasa, dan besaran arusnya Iline = 1,73Ifase, sehingga arus perfasanya menjadi IL/1,73, maka daya total (Ptotal) pada rangkaian segitiga adalah:
PT = 3.IL/1,73.VL.cos θ = 1,73.VL.IL.cos θ
Dari persamaan total daya pada kedua jenis hubungan terlihat bahwa besarnya daya pada kedua jenis hubungan adalah sama, yang membedakan hanya pada tegangan kerja dan arus yang mengalirinya saja, dan berlaku pada kondisi beban yang seimbang.
2. Daya sistem 3 fase pada beban yang tidak seimbang
Sifat terpenting dari pembebanan yang seimbang adalah jumlah phasor dari ketiga tegangan adalah sama dengan nol, begitupula dengan jumlah phasor dari arus pada ketiga fase juga sama dengan nol. Jika impedansi beban dari ketiga fase tidak sama, maka jumlah phasor dan arus netralnya (In) tidak sama dengan nol dan beban dikatakan tidak seimbang. Ketidakseimbangan beban ini dapat saja terjadi karena hubung singkat atau hubung terbuka pada beban.
Gambar 1. sistem 3 fase.
Gambar 1 menunjukkan fasor diagram dari tegangan fase. Bila fasor-fasor tegangan tersebut berputar dengan kecepatan sudut dan dengan arah berlawanan jarum jam (arah positif), maka nilai maksimum positif dari fase terjadi berturut-turut untuk fase V1, V2 dan V3. sistem 3 fase ini dikenal sebagai sistem yang mempunyai urutan fasa a – b – c . sistem tegangan 3 fase dibangkitkan oleh generator sinkron 3 fase.
Hubungan Bintang (Y, wye)
Pada hubungan bintang (Y, wye), ujung-ujung tiap fase dihubungkan menjadi satu dan menjadi titik netral atau titik bintang. Tegangan antara dua terminal dari tiga terminal a – b – c mempunyai besar magnitude dan beda fasa yang berbeda dengan tegangan tiap terminal terhadapa titik netral. Tegangan Va, Vb dan Vc disebut tegangan “fase” atau Vf.
Gambar 2. Hubungan Bintang (Y, wye).
Dengan adanya saluran / titik netral maka besaran tegangan fase dihitung terhadap saluran / titik netralnya, juga membentuk sistem tegangan 3 fase yang seimbang dengan magnitudenya (akar 3 dikali magnitude dari tegangan fase).
Vline = akar 3 Vfase = 1,73Vfase
Sedangkan untuk arus yang mengalir pada semua fase mempunyai nilai yang sama,
ILine = Ifase
Ia = Ib = Ic
Hubungan Segitiga
Pada hubungan segitiga (delta, Δ, D) ketiga fase saling dihubungkan sehingga membentuk hubungan segitiga 3 fase.
Gambar 3. Hubungan Segitiga (delta, Δ, D).
Dengan tidak adanya titik netral, maka besarnya tegangan saluran dihitung antar fase, karena tegangan saluran dan tegangan fasa mempunyai besar magnitude yang sama, maka:
Vline = Vfase
Tetapi arus saluran dan arus fasa tidak sama dan hubungan antara kedua arus tersebut dapat diperoleh dengan menggunakan hukum kirchoff, sehingga:
Iline = akar 3 Ifase = 1,73Ifase
Daya pada Sistem 3 Fase
1. Daya sistem 3 fase Pada Beban yang Seimbang
Jumlah daya yang diberikan oleh suatu generator 3 fase atau daya yang diserap oleh beban 3 fase, diperoleh dengan menjumlahkan daya dari tiap-tiap fase. Pada sistem yang seimbang, daya total tersebut sama dengan tiga kali daya fase, karena daya pada tiap-tiap fasenya sama.
Gambar 4. Hubungan Bintang dan Segitiga yang seimbang.
Jika sudut antara arus dan tegangan adalah sebesar θ, maka besarnya daya perfasa adalah
Pfase = Vfase.Ifase.cos θ
sedangkan besarnya total daya adalah penjumlahan dari besarnya daya tiap fase, dan dapat dituliskan dengan,
PT = 3.Vf.If.cos θ
• Pada hubungan bintang, karena besarnya tegangan saluran adalah 1,73Vfase maka tegangan perfasanya menjadi Vline/1,73, dengan nilai arus saluran sama dengan arus fase, IL = If, maka daya total (PTotal) pada rangkaian hubung bintang (Y) adalah:
PT = 3.VL/1,73.IL.cos θ = 1,73.VL.IL.cos θ
• Dan pada hubung segitiga, dengan besaran tegangan line yang sama dengan tegangan fasanya, VL = Vfasa, dan besaran arusnya Iline = 1,73Ifase, sehingga arus perfasanya menjadi IL/1,73, maka daya total (Ptotal) pada rangkaian segitiga adalah:
PT = 3.IL/1,73.VL.cos θ = 1,73.VL.IL.cos θ
Dari persamaan total daya pada kedua jenis hubungan terlihat bahwa besarnya daya pada kedua jenis hubungan adalah sama, yang membedakan hanya pada tegangan kerja dan arus yang mengalirinya saja, dan berlaku pada kondisi beban yang seimbang.
2. Daya sistem 3 fase pada beban yang tidak seimbang
Sifat terpenting dari pembebanan yang seimbang adalah jumlah phasor dari ketiga tegangan adalah sama dengan nol, begitupula dengan jumlah phasor dari arus pada ketiga fase juga sama dengan nol. Jika impedansi beban dari ketiga fase tidak sama, maka jumlah phasor dan arus netralnya (In) tidak sama dengan nol dan beban dikatakan tidak seimbang. Ketidakseimbangan beban ini dapat saja terjadi karena hubung singkat atau hubung terbuka pada beban.
Perlengkapan Gardu Induk
Gardu induk merupakan suatu sistem Instalasi listrik yang terdiri dari beberapa perlengkapan peralatan listrik dan menjadi penghubung listrik dari jaringan transmisi ke jaringan distribusi perimer. Perlengkapan peralatan listrik tersebut antara lain:
1. Busbar atau Rel
Merupakan titik pertemuan/hubungan antara trafo-trafo tenaga, Saluran Udara TT, Saluran Kabel TT dan peralatan listrik lainnya untuk menerima dan menyalurkan tenaga listrik/daya listrik. Ada beberapa jenis konfigurasi busbar yang digunakan saat ini, antara lain:
- Sistem cincin atau ring, semua rel/busbar yang ada tersambung satu sama lain dan membentuk seperti ring/cicin.
gambar 1. Sistem Cincin atau ring
- Busbar Tunggal atau Single busbar, semua perlengkapan peralatan listrik dihubungkan hanya pada satu / single busbar pada umumnya gardu dengan sistem ini adalah gardu induk diujung atau akhir dari suatu transmisi.
Gambar 2. Sistem busbar tunggal atau single busbar
- Busbar Ganda atau double busbar, Adalah gardu induk yang mempunyai dua / double busbar . Sistem ini sangat umum, hamper semua gardu induk menggunakan sistem ini karena sangat efektif untuk mengurangi pemadaman beban pada saat melakukan perubahan.
Gambar 3. Sistem Busbar Ganda atau double Busbar.
- Busbar satu setengah atau one half busbar, gardu induk dengan konfigurasi seperti ini mempunyai dua busbar juga sama seperti pada busbar ganda, tapi konfigurasi busbar seperti ini dipakai pada Gardu induk Pembangkitan dan gardu induk yang sangat besar, karena sangat efektif dalam segi operasional dan dapat mengurangi pemadaman beban pada saat melakukan perubahan sistem. Sistem ini menggunakan 3 buah PMT didalam satu diagonal yang terpasang secara seri.
Gambar 4. Sistem Busbar satu setengah atau one half busbar.
2. Ligthning Arrester
biasa disebut dengan Arrester dan berfungsi sebagai pengaman instalasi (peralatan listrik pada instalasi Gardu Induk) dari gangguan tegangan lebih akibat sambaran petir (ligthning Surge) maupun oleh surja hubung ( Switching Surge ).
1. Busbar atau Rel
Merupakan titik pertemuan/hubungan antara trafo-trafo tenaga, Saluran Udara TT, Saluran Kabel TT dan peralatan listrik lainnya untuk menerima dan menyalurkan tenaga listrik/daya listrik. Ada beberapa jenis konfigurasi busbar yang digunakan saat ini, antara lain:
- Sistem cincin atau ring, semua rel/busbar yang ada tersambung satu sama lain dan membentuk seperti ring/cicin.
gambar 1. Sistem Cincin atau ring
- Busbar Tunggal atau Single busbar, semua perlengkapan peralatan listrik dihubungkan hanya pada satu / single busbar pada umumnya gardu dengan sistem ini adalah gardu induk diujung atau akhir dari suatu transmisi.
Gambar 2. Sistem busbar tunggal atau single busbar
- Busbar Ganda atau double busbar, Adalah gardu induk yang mempunyai dua / double busbar . Sistem ini sangat umum, hamper semua gardu induk menggunakan sistem ini karena sangat efektif untuk mengurangi pemadaman beban pada saat melakukan perubahan.
Gambar 3. Sistem Busbar Ganda atau double Busbar.
- Busbar satu setengah atau one half busbar, gardu induk dengan konfigurasi seperti ini mempunyai dua busbar juga sama seperti pada busbar ganda, tapi konfigurasi busbar seperti ini dipakai pada Gardu induk Pembangkitan dan gardu induk yang sangat besar, karena sangat efektif dalam segi operasional dan dapat mengurangi pemadaman beban pada saat melakukan perubahan sistem. Sistem ini menggunakan 3 buah PMT didalam satu diagonal yang terpasang secara seri.
Gambar 4. Sistem Busbar satu setengah atau one half busbar.
2. Ligthning Arrester
biasa disebut dengan Arrester dan berfungsi sebagai pengaman instalasi (peralatan listrik pada instalasi Gardu Induk) dari gangguan tegangan lebih akibat sambaran petir (ligthning Surge) maupun oleh surja hubung ( Switching Surge ).
Langganan:
Postingan (Atom)